
NATO UNCLASSIFIED

This document is for distribution only to NATO, Government Agencies of NATO
member nations and their contractors. Requests for secondary distribution shall
be made to the Science and Technology Organization - Centre for Maritime
Research and Experimentation (STO-CMRE).

Official Information No Public Release NATO UNCLASSIFIED

SCIENCE AND TECHNOLOGY ORGANIZATION

CENTRE FOR MARITIME RESEARCH AND EXPERIMENTATION

Technical Report CMRE-FR-2014-017

Sensor data management to achieve
information superiority in maritime

situational awareness

Giampaolo Cimino, Gianfranco Arcieri, Steven Horn,
Karna Bryan

October 2014

About CMRE

The Centre for Maritime Research and Experimentation (CMRE) is a world-class NATO scientific
research and experimentation facility located in La Spezia, Italy.

The CMRE was established by the North Atlantic Council on 1 July 2012 as part of the NATO
Science & Technology Organization. The CMRE and its predecessors have served NATO for over 50
years as the SACLANT Anti-Submarine Warfare Centre, SACLANT Undersea Research Centre,
NATO Undersea Research Centre (NURC) and now as part of the Science & Technology
Organization.

CMRE conducts state-of-the-art scientific research and experimentation ranging from concept
development to prototype demonstration in an operational environment and has produced leaders in
ocean science, modelling and simulation, acoustics and other disciplines, as well as producing critical
results and understanding that have been built into the operational concepts of NATO and the nations.

CMRE conducts hands-on scientific and engineering research for the direct benefit of its NATO
Customers. It operates two research vessels that enable science and technology solutions to be
explored and exploited at sea. The largest of these vessels, the NRV Alliance, is a global class vessel
that is acoustically extremely quiet.

CMRE is a leading example of enabling nations to work more effectively and efficiently together by
prioritizing national needs, focusing on research and technology challenges, both in and out of the
maritime environment, through the collective Power of its world-class scientists, engineers, and
specialized laboratories in collaboration with the many partners in and out of the scientific domain.

Copyright © STO-CMRE 2014. NATO member nations have unlimited rights to use, modify,
reproduce, release, perform, display or disclose these materials, and to authorize others to do so for
government purposes. Any reproductions marked with this legend must also reproduce these
markings. All other rights and uses except those permitted by copyright law are reserved by the
copyright owner.

Single copies of this publication or of a part of it may be made for individual use only. The approval
of the CMRE Information Services is required for more than one copy to be made or an extract
included in another publication. Requests to do so should be sent to the address on the document data
sheet at the end of the document.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - i -

Sensor data management to
achieve information superiority in
maritime situational awareness

Giampaolo Cimino, Gianfranco Arcieri,
Steven Horn, Karna Bryan

This document, which describes work
performed under Project Maritime
Situational Awareness (MSA) of the
NATO Science and Technology
Organization – Centre for Maritime
Research and Experimentation
Scientific Programme of Work, has
been approved by the Director.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - ii -

Intentionally blank page

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - iii -

Sensor data management to achieve information superiority in maritime situational
awareness

Giampaolo Cimino, Gianfranco Arcieri, Steven Horn, Karna Bryan

Executive Summary: The NATO Science & Technology Organization (STO)
Centre for Maritime Research and Experimentation (CMRE) Maritime Situational
Awareness (MSA) project investigates the potential of technologies, tools, and
techniques to address the processing of maritime data for improved MSA to enable
information superiority via the development of algorithms for multi-sensor fusion,
target tracking and maritime anomaly detection. This is being developed as a
service-oriented (SOA) based software architecture to ensure rapid adaptability and
extensibility in a NATO networked environment.
The objective of this work was to develop a system able to store heterogeneous
sensor data used in the maritime domain. Furthermore, it was design objective to
achieve good performance and cost effectiveness. In particular, this report describes
the backend tier of the SOA infrastructure which enables the storage and access to
valuable MSA data such as AIS, Radar and SAR as follows:

 The design of the backend database, which is capable of storing very large

datasets (up to several million contacts per day) using COTS software and
relatively simple hardware. The system achieve excellent performance as
demonstrated by a simulation of 40 concurrent database users incrementally
querying 6 hours of AIS data over the Mediterranean Sea while achieving less
than 100 millisecond response time per transaction.

 A software layer to make the database infrastructure transparent to client
applications. This software layer abstracts the database structure which can be
optimized for performance without adding additional complexity to the user.

 A generic software framework which allows users to acquire, transform and
send data from any source to any destination. For this framework the database
can be both a source (data extraction) and/or a destination (data load).
Source/destination types and data formats can be easily combined achieving a
fast configurable system to acquire, store and extract data.

The system presented, designed and implemented at NATO STO CMRE for the
MSA project, has been deployed since 2009 and it is still under continuous
development. It is shown to be able to deliver relevant information from sensors to
the information consumer or to the decision makers, in a timely manner.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - iv -

Intentionally blank page

CMRE-FR-2014-017

 - v -

Sensor data management to achieve information superiority in maritime situational
awareness

Giampaolo Cimino, Gianfranco Arcieri, Steven Horn, Karna Bryan

Abstract: This report describes the data handling process set up at the NATO
Science & Technology Organization (STO) Centre for Maritime Research and
Experimentation (CMRE) which includes sensor data acquisition, processing,
storage and access in support of the Maritime Situational Awareness (MSA) project.
The Database Management System (DBMS) and the way in which sensor data is
acquired and loaded using a database access layer framework for client applications
is described. The system has been designed and developed to cope with extremely
large data volumes generated by sensors and it is the foundation for supporting the
CMRE MSA Service Oriented Architecture and the Fusion on Demand concept.
Many aspects of this system are then analyzed: data sensor parsing, real-time
database loading, database structure, database data extraction (real-time and
historical). This analysis is supported with performance figures for the use of the
system with real data sets. This analysis demonstrates that the system is an effective
way to deliver relevant information to MSA decision makers. The whole system is
currently deployed at CMRE.

Keywords: MSA, Database, DBMS, SQL Server, AIS, ETL, OLAP, OLTP, Radar,
C#, Big Data, Microsoft .Net, Information Superiority

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - vi -

Contents

1. Introduction .. 1

1.1 Rationale ... 1

1.2 Guide for the reader .. 2

2. Database ... 3

2.1 Technical foundation and system design .. 3

2.2 Table structure .. 5

2.3 Data volumes .. 11

2.4 Performance .. 14

3. Data Assimilation ... 16

3.1 Introduction ... 16

3.2 Class Structure .. 16

4. Data Assimilation Guide .. 21

4.1 Introduction ... 21

4.2 How to create a simple logger .. 21

5. Database Access Layer .. 30

5.1 Introduction ... 30

5.2 Class structure ... 30

5.3 How to extend the database access layer .. 33

5.4 How to use the database access layer ... 33

6. Conclusions .. 35

Acronyms .. 36

Acknowledgements ... 37

References ... 38

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 1 -

1
Introduction

1.1 Rationale

The goal of the NATO STO CMRE Maritime Situational Awareness (MSA) project is to
enable information superiority via the development of algorithms for multi-sensor fusion,
target tracking and maritime anomaly detection. This is being developed as a service-
oriented (SOA) based software architecture to ensure rapid adaptability and extensibility
in a NATO networked environment. This capability will enable operators to make faster
and better decisions, by presenting them with a high quality real-time and an historical
picture of the maritime environment.

The MSA concept implies effective understanding of anything associated with the
maritime domain, specifically with those phenomena that could impact security, the
economy and the environment. Information is the foundation for MSA, therefore
gathering, storing and accessing MSA datasets is of paramount importance. The data
types involved are highly heterogeneous: nautical cartography, meteorological and
oceanographic data (MetOc), real-time ship traffic, earth observation products, radar data
and more. Work with this datasets is challenging for the non-harmonic aggregation of
data types and for the huge size of some datasets, leading the designers of the system in
the “Big Data” business.

This work describes the architecture implemented at CMRE to support the process
graphically represented in Figure 1: . The components described in this report, belong to a
larger system, Service Oriented Architecture based, described in [6] and in [7].

 High level diagram of MSA incoming data flow. Figure 1:

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 2 -

1.2 Guide for the reader

The central four chapters of this paper are each aimed at specific audiences.

• Chapter 2 describes the database structure and presents a data access performance
evaluation for the database instance installed at CMRE. It is recommended for
software engineers, database administrators and system administrators

• Chapter 3 describes the sensor data parsing and assimilation process. It is
recommended for system administrators and software engineers

• Chapter 4 is a guide on how to use the class framework to create new data acquisition
applications. It is recommended for software engineers

• Chapter 5 describes how to use and how to extend the Database Access Layer (DAL).
It is recommended for software engineers

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 3 -

2
Database

2.1 Technical foundation and system design

Storing data from heterogeneous sensors involved in the MSA domain is challenging for
the following reasons:

• Sensor data volumes vary from a few ship positions detected from a Synthetic
Aperture Radar (SAR) image to several millions of contacts per day retrieved from an
Automated Identification System (AIS) network like AISHub1;

• Both real-time and historical data access are required;

• The database must support continuous real-time data ingestion;

• The data is used for different purposes, e.g. visualization, post-processing, real-time
processing, therefore is accessed with different patterns;

• A commodity server should be able to host the data in order to facilitate the
installation of database in different organizations (keeping hardware requirements
low enables cost effective system deployment).

On the other hand, the data involved is straightforward to store:

• Sensor data is Write-Once Read-Many, that is, once an information has been written
in the database, it is not modified (no SQL update is performed);

• The data schema is simple and joins operations are rarely requested, limiting the
number of foreign key relations.

The first technical decision was to favour relational databases over NoSQL databases.
Despite the increasing popularity NoSQL database [1], the organization decided to
benefit of its strong know-how in relational databases limiting the risk of an unexplored
technology. Therefore, Microsoft SQL Server 2008 R2 was chosen as the database
backend, hosted on a Windows Server 2008 R2 operating system.

Once the database type was set, the main architectural choice was the use of two
concurrent relational databases one for On-Line Transaction Processing (OLTP) and one
for On-Line Analytical Processing (OLAP). This pattern was inspired by database design
best-practices used in Information Technology systems from different domains, such as
enterprise, banking and finance. The idea is graphically explained in Figure 2: .

1AIS hub is an open AIS data sharing service which is available at http://aishub.net.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 4 -

 Diagram of OLAP/OLTP data flow. Figure 2:

The real-time ingestion of the sensor data is performed on the OLTP database while the
long-running historical queries are executed versus the OLAP database. This separation
leads to more scalability over the number of input sensors (on OLTP) and over the
number of long running parallel queries (on OLAP). A nightly batch process loads the
past day’s data from OLTP to OLAP, using a bulk insert technique2 and deletes from
OLTP those records which are older than a retention policy threshold (normally four
weeks). The current day’s data is read by the clients from the OLTP database vice the
real-time stream, which partially breaks the normal data flow. Although the real-time data
is also retrieved from OLTP the overall performance is not adversely affected due to the
relatively small data volume. The drawback of the OLAP/OLTP pattern is an increase of
the complexity of the system as a whole, which requires more hardware, more database
administration time and more system administrator efforts. To mitigate the increased
system complexity overhead, the internal structure of the two databases (table schemas
and their relationships) was kept as simple as possible.

In general, in the OLTP/OLAP pattern, the two databases have diverse schemas to favour
different queries goals:

• OLTP: insert instructions and standard simple queries with small data sets and few
fields

2 Bulk insert is an efficient process or method provided by a database management system to load multiple

rows of data into a database table (from www.wikipedia.org)

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 5 -

• OLAP: complex and long-running queries with large result-sets and a number of
fields

Due to the relatively simple structure of the CMRE MSA data, the same schema is used
for both OLAP and OLTP. The only difference is the way in which the data is split over
different tables across time (sharding), as described in section 2.2:

• OLTP: tables split per sensor, per week of the year3

• OLAP: tables split per sensor, per month

The division per week of OLTP is optimal because it avoids the growth of the number of
records per table. However, in OLAP, this strategy would result in an excessive number
of tables (56 tables per year per sensor). Therefore, OLAP is split on monthly basis.

To make this architecture truly effective, the databases need to run on separate hardware,
enabling the parallelization of the read and write operations on the two databases.
Hardware virtualization has not been taken into account because is usually not
recommended for database servers. Hard disk performance is very important to ensure the
overall system performs effectively. In particular, OLTP requires fast disks with little
space, while OLAP requires significant space, but speed is less important. The CMRE
databases are hosted on two twin HP DL 380 G6 machines with 144 GB RAM and 2 Intel
Xeon E5649 2.53 GHz microprocessors. The disks of the two servers are hosted in an
external Storage Area Network (SAN) using a fibre channel link to a SAN EMC VNX
5300, with a 24 hard drive SAS, 900 GB each at 10K rpm. For an estimation of the
potential throughput of the described hardware see [5].

2.2 Table structure

As of the time this report was written, the CMRE MSA database contains two principal
types of data: AIS and radar (ground based and ship borne). Both types of data are stored
in the OLAP and OLTP database, according to the scheme described in section 2.1.
Within the databases, data is organized into separate tables according to sensor type, data
type and time frame. The naming convention used for the tables describes this division as
indicated below:

<sensor>_<data type>_S<sensor ID>_<year>_<time range ID>

where sensor ID is a unique integer number assigned to each sensor. For example:
AISHub (sensor ID 4) AIS static data in OLTP database (weekly split) for week 33 of
year 2012 would be labelled as:

AIS_Static_S04_2012_33

Another example: Radar contacts (Positioning) from R/V Alliance Radar (sensor ID 6) in
OLAP database (monthly split) for February 2012 would be labelled as:

3 Weeks in a year are numbered according to the ISO 8601 standard

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 6 -

Radar_Contacts_S06_2012_02

Sensor data is delivered in atomic items, e.g. AIS is sent using National Marine
Electonics Association (NMEA) Very High Frequency (VHF) Data-link Message (VDM)
sentences (see [2] and [3]) which consist of one or more lines of text. During the database
design phase, different database schemas had been tested, all involving a level of
normalization in order to reduce storage space. These approaches require a complex insert
instruction since one data message may insert records in multiple tables. Furthermore,
querying on this structure also requires complex selects which join multiple tables. All
these operations decrease the overall database performance when the data volume is
massive (see 2.3). Therefore, a simple design was chosen: store each atomic data item in
a single database record (e.g. one AIS sentence per record). This approach will cause data
redundancy in the database, since tables are not normalized. On the other hand, de-
normalization is a common practice in database administration to avoid slow join
operations. The drawback to this approach is an increased need for disk space to store
larger tables. Fortunately disks are currently a relatively inexpensive resource.

In the following subsections, each sensor currently being archived in the database is
described. Note that, as generic rule, data is stored in International System units, and
positions are stored in geographic coordinates (decimal degree, latitude relative to north,
WGS84).

2.2.1 Automatic Identification System (AIS) data

As described in [2] and [3], AIS data is transmitted using NMEA VHF Data-link Message
(VDM). Several types of messages are received, but only VDM AIS message types 1, 2,
3, 5, 18, 19, and 24 are loaded into the MSA database. These messages are effectively
classified into two types: static (5, 19, and 24) and positioning4 (1, 2, 3, 18, and 19).
Positioning messages report the unit position and are transmitted at a frequency that
depends on the unit’s speed and manoeuvering status. Static messages contain voyage and
size/identity information and are transmitted at lower rate than the position messages.
According to this classification, two types of tables are generated in the database for a
given AIS dataset: AIS_Contacts (for positioning data) and AIS_Static (for static data).
Table 1: describes the AIS Contacts table.

4 In this paper the words positioning, kinematic and contacts are used interchangeably

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 7 -

Field name Field Type
Allow
null

Notes
Mapping to

AIS
message ID

Time int No Primary Key. Epoch time N.A.

Id int No Primary Key. MMSI All

Latitude float No Index. Decimal Degree relative to
north

1, 2, 3, 18, 19

Longitude float No Index. Decimal Degree 1, 2, 3, 18, 19

CourseOverGround float Yes Decimal Degree relative to north 1, 2, 3, 18, 19

TrueHeading float Yes Decimal Degree relative to north 1, 2, 3, 18, 19

SpeedOverGround float Yes [knots] 1, 2, 3, 18, 19

RateOfTurn float Yes [deg/min] 1, 2, 3

PositionAccuracy tinyint Yes See [2] 1, 2, 3, 18, 19

NavigationalStatus tinyint Yes See [2] 1, 2, 3

AISMessageId tinyint No All

Sentence varchar (512) No Complete AIS sentences, comma
separated

N.A.

Table 1: AIS contacts table in the CMRE MSA database.

The table contains also the time (in epoch time format) which isn’t included in the
original VDM message. This timestamp is usually assigned at the time of AIS message
reception. Additionally, the full raw NMEA sentence is added to the table to keep track of
the original data. The primary key consists of Id using the Maritime Mobile Service
Identity (MMSI), and time. Latitude and longitude are used as a non-clustered indexes in
order to accelerate the spatial queries.

The AIS static table is described in Table 2:.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 8 -

Field name Field Type Allow null Notes
Mapping to

AIS
message ID

Time int No Primary Key. Epoch
time

N.A.

MMSI int No Primary Key. all

Name varchar(64) Yes 5, 19, 24A

IMO int Yes 5

CallSign varchar(12) Yes 5, 24

Width smallint Yes [m] 5, 19, 24B

Length smallint Yes [m] 5, 19, 24B

AntennaFromBow smallint Yes [m] 5, 19, 24B

AntennaFromPort smallint Yes [m] 5, 19, 24B

ETAMonth tinyint Yes 5

ETADay tinyint Yes 5

ETAHour tinyint Yes 5

ETAMinute tinyint Yes 5

Draught float Yes [m] 5

Destination varchar (48) Yes 5

ShipTypeId smallint Yes See [2] 5, 19, 24B

CargoId smallint Yes See [2] 5, 19, 24B

AISMessageId tinyint No All

Sentence varchar (512) No Complete AIS
sentences, comma
separated

N.A.

Table 2: AIS Static table in CMRE MSA database.

Timestamp and raw VDM sentence are added as in the contacts table. Primary key is
again made by time and Id (MMSI). For this table, there are no secondary indexes. A
detailed description of AIS fields is available in [2].

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 9 -

Not all of the AIS static/kinematic messages contain all the fields reported in the database
tables: a mapping is available in the last column of Table 1: and Table 2:. If a message
does not contain some fields, the table value is set to NULL.

2.2.2 Radar data

The CMRE MSA project collects data also through ground and ship borne radars. The
radar data is post-processed and only the high confidence detections are saved into the
database. The format of these contacts is heavily dependent on the sensor type and the
post processing algorithm. At this preliminary stage two radar types are used: R/V
Alliance ship borne radar, providing the data in NMEA 0183 Tracked Target Message
(TTM) format (see [3]), and WERA High Frequency surface wave radar5 (see [17] [18]),
providing the data in custom text files. For the radar data, only a contacts table is created
since there is no equivalent of static data as found in AIS.

The table structure for R/V Alliance radar is shown in Table 3:. Note that the contact
latitude and longitude are calculated by the data loader using the closest R/V Alliance
GPS position and the range and bearing from the TTM message. Time stamp and the
whole TMM sentence are also stored in each record.

The table structure for HF WERA surface wave radar is shown in Table 4:. A detailed
description and units of measure of the parameters can be found in [4].

In both radar tables the primary key is time and Id/progId. A non-clustered index is
generated on Latitude and Longitude fields for faster spatial queries. Note that for the
WERA Radar, the progId (progressive Id) field does not associate contacts from two
consecutive radar scans.

5 CMRE deployed two WERA HF Radar stations: on Palmaria Island, La Spezia, Italy and on San Rossore

coast, Pisa, Italy.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 10 -

Field name Field Type Allow null Notes

Time int No Primary Key. Epoch time

ID int No Primary Key. Contact progressive ID

RangeFromSensor float Yes [km]

BearingFromSensor float Yes Decimal Degree relative to north

Speed float Yes [km/h]

Heading float Yes Index. Decimal Degree relative to north

Longitude float Yes Index. Decimal Degree

Latitude float Yes Decimal Degree relative to north

SensorLongitude float Yes Decimal Degree

SensorLatitude float Yes Decimal Degree relative to north

Sentence varchar (512) No TTM sentence

Table 3: R/V Alliance ship borne radar table in CMRE MSA database.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 11 -

Field name
Field
Type

Allow
null

Notes

Time int No Primary Key. Epoch time

progId int No Primary Key. Contact progressive ID

Longitude float Yes Index. Decimal Degree

Latitude float Yes Index. Decimal Degree relative to north

SensorLongitude float Yes Decimal Degree

SensorLatitude float Yes Decimal Degree relative to north

RangeFromSensor float Yes [km]

BearingFromSensor float Yes Decimal Degree relative to north

contactRadialSpeedReversed float Yes [m/s]

stdevDistance float Yes Stdev of RangeFromSensor

stdevAngle float Yes Stdev of BearingFromSensor

stdevSpeed float Yes Stdev of contactRadialSpeedReversed

SNRdbCFAR float Yes See [4]

SNRdb float Yes See [4]

Table 4: WERA High Frequency ground radar contacts table in CMRE MSA database.

2.3 Data volumes

The database system described in the paragraphs above has been running at NATO STO
CMRE since 2009. Figure 3: presents the number of records per month in the OLAP
database for all the AIS sensors.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 12 -

 Data volumes for CMRE OLAP database. Figure 3:

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 13 -

 Data volumes in CMRE OLAP database for the Open AIS Network data Figure 4:
provider divided into static and positional messages.

The sensors are:

• CMRE AIS receiver6, local coverage

• Open AIS Network, world coverage

• Government to Government AIS network, world coverage

Satellite AIS network, non-continuous world coverage

The chart shows that the number of records, hence the number of AIS messages,
increases over time as expected due to the increasing number of AIS receivers connected
to the AIS network and by the increasing number of ships using AIS devices. It is also
observed that the AIS message volume follows a seasonal pattern with more records
during the summer period.

6 The CMRE AIS receiver is set up in 44.06752° N, 9.816185° E, in Castellana locality, La Spezia, Italy

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 14 -

The number of records per month in Figure 3: comprises both AIS static and position
messages. In the database, these messages are split over two corresponding tables
(AIS_Static and AIS_Contacts), hence the number of records per database table is less
than depicted in Figure 3: . For clarity, Figure 4: shows the number of messages in the
OLAP database for the open AIS network divided into static and position messages. In
this case, the numbers from the chart are equal to the number of records per table (split on
a monthly basis). Figure 4: shows an extremely large number of records per table. This
number is larger than recommended guidelines for database administration best practices.
However, the data extraction queries performance resulted in acceptable performance in
terms of latency (see 2.4), mainly due to the simplicity of the data extraction query. The
OLTP database does not suffer of this large table problem, since it is split on weekly
basis.

2.4 Performance

This performance analysis focuses on the CMRE MSA OLAP database for extraction
queries (SQL selects). The OLTP database is smaller, and therefore results are less
affected by performance degradation for select queries. The goal of the performance test
was to calculate the extraction query time with an increasing number of concurrent users.
To this end, the following SQL query was used:

SELECT Time, ID, Longitude, Latitude
FROM AIS_Contacts_S04_2011_<month>
WHERE

Time BETWEEN <t1>+<randomOffset> AND <t1>+<randomOffset>+300 AND
latitude BETWEEN 20.0 AND 40.0 AND
longitude BETWEEN 0.0 AND 40.0

where:

• <month> is the number of month that identify the table

• <t1> is the time stamp of the first day of the <month> at 00:00:00

• <randomOffset> is a random time span across the <month>

Note that the constant 300 in the where clause is expressed in seconds, and it is the length
of the time interval queried (five minutes). To make the test more realistic there is a fixed
spatial where clause.

The test was done simulating six concurrent queries (as the one described above),
referring to the first 6 months of 2011 for the AIS open network sensor, using 5, 10, 20,
30 and 40 concurrent users. Each of these six queries is run 72 times (72 queries, each
one extracting 300 seconds of data, to simulate an incremental extraction of 6 hours of
data). Note that the <randomOffset> parameter invalidates the effect of the DBMS cache:
each single query executed during the test uses a different value of <randomOffset>
(randomly generated), extracting different block of data in the table, trying to deactivate
the effect of caching. The results with the average response time, and the system
throughput is shown in Figure 5: . The average response time for up to 40 concurrent
users doesn’t exceed the value of 100 milliseconds. This shows that the overall
architecture used is extremely effective. Also, the throughput of the system doesn’t show

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 15 -

any significant degradation for the range of concurrent users chosen for the test, showing
that the system is not saturated for these query volumes.

 CMRE MSA OLAP database performance analysis. Figure 5:

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 16 -

3
Data Assimilation

3.1 Introduction

This chapter describes a software framework developed to support the CMRE MSA
project implementing the sensor data extraction, transformation, and delivery
functionalities. This framework has been completely implemented at CMRE, using
Microsoft .NET and it is based on the Situational Awareness Core (SACore) described in
[6]. The main functionalities are included in the CMRE.IO.Reports namespace. These
functionalities enable a three steps process:

• Acquire data from a data source (e.g. file(s), network, databases, web services, etc.)

• Transform the data into a common format

• Send the data to a set of destinations (e.g. file(s), network, databases, web services,
etc.)

At any level it is possible to add filtering capabilities to exclude data items that are of
little interest for the desired application. If the final destination is a database, a complete
Extract Transform Load (ETL) process is achieved, as previously indicated in Figure 1: .
The common data format is the IReport interface and its subclasses, as described in [6].
This format is able to represent heterogeneous data sets (AIS messages, radar contacts,
GPS sentences, etc.) acting as a dynamic type.

3.2 Class Structure

The main high-level (abstract) classes of the CMRE.IO.Reports namespace are shown as
UML class diagram in Figure 6: . For readability, only the most significant public
methods are shown in the diagram. The central class is ReportSource, whose subclasses
encapsulate the physical source of data: File, TCP, database, etc. The class hierarchy
underneath ReportSource is described in the class diagram of Figure 7: .
ReportSourceASCII handles all the sources providing data in ASCII format (e.g. text file).
ReportSource has a Start() (blocking) and Stop() method to control the production of
reports.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 17 -

 High level UML class diagram of CMRE.IO.Reports. Figure 6:

The Parser class is associated with ReportSourceASCII, and it has the responsibility of
converting the text lines in subclasses of IReport, according to the actual type of the
generic type parameter T. Note that some conversions might not be available, in this case,
during object construction, a run-time exception will be thrown. The whole class
hierarchy under Parser is further described in the class diagram in Figure 8: .

The Parser also has filtering capabilities using concrete ReportFilter implementations
(see UML class diagram in Figure 9:). In order to add a filter to a Parser, it is necessary
to call the AddFilter() method on the parser object. If more than one filter is added, all of
the filter’s conditions must be satisfied for the parsed object to pass. In this way, filters
are combined with the logic operator AND. Although basic filtering capabilities are
available in the framework, adding new filters is very easy for the users by just adding
sub-classes of ReportFilter as will be explained in Chapter 4.

Converted reports are delivered to the concrete implementations of the class Receiver (see
the UML class diagram in Figure 11:). Multiple receivers can be added to ReportSource
using the SetReceiver() method. In the case of multiple receivers, all reports are
sequentially delivered to each Receiver with the blocking method ReceiveReports(). A
receiver may use a ReportFilter() in order to locally discard reports of little interest.

ReportSourceASCII delivers the input text lines, without any processing action, to a
LineReceiver (see UML class diagram in Figure 10:), using the method ReceiveLine().

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 18 -

 UML class diagram of ReportSource class hierarchy. Figure 7:

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 19 -

 UML class diagram of the Parser class hierarchy. Figure 8:

 UML class diagram of ReportFilter class hierarchy. Figure 9:

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 20 -

 UML class diagram of LineReceiver class hierarchy. Figure 10:

 UML class diagram of Receiver class hierarchy. Figure 11:

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 21 -

4
Data Assimilation Guide

4.1 Introduction

This chapter describes how to create new applications based on the class framework
described in chapter 3. This is done by guiding the reader through the creation of a simple
data logger application that uses the features available in the CMRE.IO.Reports
namespace. This chapter assumes a basic knowledge of the C# programming language [8]
and the availability of a set of assemblies containing the framework and some extra
functionality.

4.2 How to create a simple logger

4.2.1 A minimal logger

The first step is to create a new Visual Studio 20107 console application project using
.Net framework 4.0. Once the project has been created add to the project references the
assemblies: SACore.Information.Basic.dll, CMRE.Utility.dll CMRE.IO.Report.dll,
SACore.dll.

We assume a live AIS stream is available to the user and the data is transmitted as
encoded text using the classic NMEA 0183 VDM message format as described in [2][3].
The AIS data transmission is usually based on a raw TCP connection initiated by the
client to a server that streams the AIS data. Once the connection is open, the server starts
to send the data in the format below (ASCII text) and the client only receives.

!AIVDM,1,1,,B,13coMH3P000e0EpI?:00oOvV0@;V,0*4C
!AIVDM,1,1,,B,14i1Rr?1@0Pe9qpI>gSewop`2400,0*03
!AIVDM,1,1,,A,13cbA`0P1c0a;:0I07l9M7fT08<0,0*01
!AIVDM,1,1,,B,13cf4=00000g9UHHsFWHAF4b0400,0*6F
!AIVDM,1,1,,B,181:Jm`w@00g:tPHsbb:2ULT0<0U,0*39
!AIVDM,2,1,0,A,55ANwt0221cDS<Q0000m<>0Hhu8T4p4000000017D@I,0*6C
!AIVDM,2,2,0,A,>>4I60@S0H4l1FR@@00000000000,2*49
!AIVDM,1,1,,B,13cfMV0P000g:3VHs?<0vgvb2400,0*5A
!AIVDM,1,1,,A,402;bK1u`M00E0bmd8HVqu7000S:,0*39
!AIVDM,2,1,1,B,55ANwt0221cDS<Q0000m<>0Hhu8T4p4000000017D@I,0*6E
!AIVDM,2,2,1,B,>>4I60@S0H4l1FR@@00000000000,2*4B

7 Note that is possible to develop the application employing the free Visual Studio Express 2010 IDE. It is

also possible to use the command line C# compiler csc.exe

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 22 -

!AIVDM,1,1,,A,13cwh`?P000g9l4Hs@C@0?vV0400,0*32
!AIVDM,1,1,,B,34h>OE5v010e:=8I>fmqMGpdP000,0*25
!AIVDM,1,1,,B,13cg:r003E0camjHsQ?mpT``0@=E,0*3C
!AIVDM,1,1,,B,15SN00002R0aHcFI1DoaPG`f0<0e,0*1A
!AIVDM,1,1,,B,13cjbg0wP00foW0I66`8NQnf0D0I,0*59

In case the reader has no available live AIS source, for testing, is possible to use a free
AIS stream provided by hd-sf.com for the San Francisco Bay Area on TCP port 90098.
The code to set up the TCP data source is shown below.

using CMRE.IO.Reports.InputStream;
using SACore.Information;
using CMRE.IO.Reports.MessageParser;

namespace SimpleFileLogger
{
 public class Program
 {
 static void Main(string[] args)
 {
 Parser<IReport> parser = new ParserNMEALocalTime<IReport>(1, "San
Francisco AIS");

 ReportSourceASCII<IReport> source = new TCP<IReport>("hd-sf.com",
9009, parser);
 }
 }
}

The parser is responsible for converting the incoming data (AIS NMEA VDM messages)
into the common data format (described in [6]), that is specified with the generic
parameter T. The common data format must be consistent with all the objects connected
to the parser. In this case the common format is the most generic one: IReport. The user
can specify any descendent of IReport, when specific data formats are required (this is
discussed further in 4.2.6). Note that the concrete class for the parser is
ParserNMEALocalTime, which will add the system time to each received AIS message.
This timestamp is necessary for storing and archiving purposes since the incoming AIS
data has no time stamp included due to the fact that the format is originally designed for
real-time applications. The second step is to create the TCP report source using hd-sf.com
as address and 9009 as TCP port. The third parameter is the just created parser object.
Note that ReportSource has the same generic type parameter of Parser.

As final step a FileReceiver is created and added to the ReportSource using SetReceiver()
method. The FileReceiver redirect the converted incoming data to the file

8 Please note that hd-sf.com (San Francisco Bay Area AIS) feed data provided free for non-commercial use
with best efforts service

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 23 -

d:\tmp\ais_parsed.txt. The acquisition begins when the blocking method Start() is called
on the source object. See the code below (with the newly added code highlighted):

using CMRE.IO.Reports.InputStream;
using SACore.Information;
using CMRE.IO.Reports.MessageParser;
using CMRE.IO.Reports.OutputStream;
using CMRE.IO.Reports.OutputStream.ReportReceiver;

namespace SimpleFileLogger
{
 public class Program
 {
 static void Main(string[] args)
 {
 Parser<IReport> parser = new ParserNMEALocalTime<IReport>(1, "San
Francisco AIS");
 ReportSourceASCII<IReport> source = new TCP<IReport>("hd-sf.com",
9009, parser);

 Receiver<IReport> dataReceiver = new
FileReceiver<IReport>(@"d:\tmp\ais_parsed.txt");
 source.SetReceiver(dataReceiver);
 source.Start();
 }
 }
}

Now the file d:\tmp\ais_parsed.txt should receive the (parsed) incoming data. Assuming
UNIX tools are available on the system, the output of the command “tail -f
d:\tmp\ais_parsed.txt” is shown in Figure 12: .

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 24 -

 Log file generated by the simple logger. Figure 12:

4.2.2 Save the raw data

It is usually desirable to log the incoming data in a raw format to files, especially for
backup or for future use. To this end, it is possible to add a
LogFileLineReceiverTimeStamp to the source object. This Receiver inherits from
LineReceiver (not from Receiver), and it works only with ASCII data sources. Its
responsibility is to write the incoming data (AIS sentences in this case) to a destination
without applying any parsing. In this case, the destination is a file. Each line will be
decorated (at end of each line) with the receiving time stamp in epoch time format. This
receiver has log file rolling functionalities (by default the rolling is daily based).

using CMRE.IO.Reports.InputStream;
using SACore.Information;
using CMRE.IO.Reports.MessageParser;
using CMRE.IO.Reports.OutputStream;
using CMRE.IO.Reports.OutputStream.ReportReceiver;
using CMRE.IO.Reports.OutputStream.LineReceiver;

namespace SimpleFileLogger
{
 public class Program
 {
 static void Main(string[] args)
 {
 Parser<IReport> parser = new ParserNMEALocalTime<IReport>(1, "San
Francisco AIS");

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 25 -

 ReportSourceASCII<IReport> source = new TCP<IReport>("hd-sf.com",
9009, parser);

 Receiver<IReport> dataReceiver = new
FileReceiver<IReport>(@"d:\tmp\ais_parsed.txt");
 source.SetReceiver(dataReceiver);

 LineReceiver logFile = new
LogFileLineReceiverTimeStamp(@"d:\tmp\ais_log.txt");
 source.SetLineReceiver(logFile);

 source.Start();
 }
 }
}

The incoming AIS data in NMEA VDM format should be saved in the file
d:\tmp\ais_log.txt.

4.2.3 Add filtering capabilities

Assume one wants to limit the amount of parsed data sent to the FileReceiver
(ais_parsed.txt), and log the raw data in native format (ais_log.txt). This is a realistic
scenario, since the entire data is usually kept for archive and future-use, while for the real
time processing one might be interested in a subset of the data set (for instance to a
specific region). This can be achieved using the filtering capabilities. For instance, in the
case of the San Francisco bay, let’s say we want only the AIS messages with vessel
position east of the Golden Gate bridge (longitude less than 122 28’ 42’’ W). In this case,
one just needs to add a new BoundingBoxFilter to the dataReceiver object.

using CMRE.IO.Reports.InputStream;
using SACore.Information;
using CMRE.IO.Reports.MessageParser;
using CMRE.IO.Reports.OutputStream;
using CMRE.IO.Reports.OutputStream.ReportReceiver;
using CMRE.IO.Reports.OutputStream.LineReceiver;
using CMRE.IO.Reports.Filter;

namespace SimpleFileLogger
{
 public class Program
 {
 static void Main(string[] args)
 {
 Parser<IReport> parser = new ParserNMEALocalTime<IReport>(1, "San
Francisco AIS");
 ReportSourceASCII<IReport> source = new TCP<IReport>("hd-sf.com",
9009, parser);

 Receiver<IReport> dataReceiver = new
FileReceiver<IReport>(@"d:\tmp\ais_parsed.txt");

 //122 28’ 42’’ W = -122.47833333
 BoundingBoxFilter<IReport> eastOfGoldenGate =
 new BoundingBoxFilter<IReport>(-122.47833333, 0, -90, +90);
 dataReceiver.AddFilter(eastOfGoldenGate);
 source.SetReceiver(dataReceiver);

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 26 -

 LineReceiver logFile = new
LogFileLineReceiverTimeStamp(@"d:\tmp\ais_log.txt");
 source.SetLineReceiver(logFile);

 source.Start();
 }
 }
}

The output in ais_parsed.txt file should now contain only AIS messages with kinematic
information and with the longitude between -122.4783333 and 0. Note that no limitation
has been set on latitude (set between -90 and +90).

4.2.4 Add a second Receiver

A ReportSourceASCII object could have multiple Receiver and multiple LineReceiver
objects. In this case, the converted data and the original data are sent sequentially to each
receiver. Let’s say we want to add a second LineReceiver that acts as TCP relay on port
19009, allowing other clients to connect and get the data.

using CMRE.IO.Reports.InputStream;
using SACore.Information;
using CMRE.IO.Reports.MessageParser;
using CMRE.IO.Reports.OutputStream;
using CMRE.IO.Reports.OutputStream.ReportReceiver;
using CMRE.IO.Reports.OutputStream.LineReceiver;
using CMRE.IO.Reports.Filter;

namespace SimpleFileLogger
{
 public class Program
 {
 static void Main(string[] args)
 {
 Parser<IReport> parser = new ParserNMEALocalTime<IReport>(1, "San
Francisco AIS");
 ReportSourceASCII<IReport> source = new TCP<IReport>("hd-sf.com",
9009, parser);

 Receiver<IReport> dataReceiver = new
FileReceiver<IReport>(@"d:\tmp\ais_parsed.txt");
 //122 28’ 42’’ W = -122.47833333
 BoundingBoxFilter<IReport> eastOfGoldenGate =
 new BoundingBoxFilter<IReport>(-122.47833333, 0, -90, +90);
 dataReceiver.AddFilter(eastOfGoldenGate);
 source.SetReceiver(dataReceiver);

 LineReceiver logFile = new
LogFileLineReceiverTimeStamp(@"d:\tmp\ais_log.txt");
 source.SetLineReceiver(logFile);

 TCPServerLineReceiver tcpRelay = new TCPServerLineReceiver(19009);
 source.SetLineReceiver(tcpRelay);

 source.Start();
 }
 }
}

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 27 -

Once the program is running, it should be possible to open a connection to the port 19009
(using raw TCP connection9) at localhost address and get back the data stream in the
original format. Note that the time stamp in epoch time format will be added at the end of
each line. The instances of all of the objects created in this source code are described in
the UML diagram in Figure 13.

 UML object diagram for source code in paragraphs 4.2.1, 4.2.2, 4.2.3 and Figure 13:
4.2.4.

4.2.5 Use a different input source

Assume now that one wishes to change the input source to use a text file instead of a TCP
stream. This is possible by just changing the concrete implementation of
ReportSourceASCII to File. The input file path is provided as a constructor input
parameter in the File class. For instance it is possible to use the file generated in 4.2.2
(ais_log.txt). In this case, it is also necessary to change the type of Parser from
ParserNMEALocalTime to ParserAISNMEATimeStampedEpoch. The latter uses the time
stamp in epoch time format at the end of each line of text instead of the time of the
system clock. The code below relays the data from the file to a TCP stream on port

9 A simple free tool for open a raw TCP connection is PuTTY, http://www.putty.org/

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 28 -

19009. To view the output data use the same tool as in 4.2.4. Moreover, for simplicity, all
the modifications to the code from the previous paragraphs have been cleaned up.

using CMRE.IO.Reports.InputStream;
using SACore.Information;
using CMRE.IO.Reports.MessageParser;
using CMRE.IO.Reports.OutputStream;
using CMRE.IO.Reports.OutputStream.ReportReceiver;
using CMRE.IO.Reports.OutputStream.LineReceiver;
using CMRE.IO.Reports.Filter;

namespace SimpleFileLogger
{
 public class Program
 {
 static void Main(string[] args)
 {
 Parser<IReport> parser = new ParserAISNMEATimeStampedEpoch
<IReport>(1, "AIS playback");

 ReportSourceASCII<IReport> source = new
File<IReport>(@"d:\tmp\ais_log.txt", parser);

 TCPServerLineReceiver tcpRelay = new TCPServerLineReceiver(19009);
 source.SetLineReceiver(tcpRelay);

 source.Start();
 }
 }
}

4.2.6 Change the common data format

It is possible to change the common data format generated by the ReportSource objects
by just changing the actual value of the generic type parameter T of all the classes
involved. One could be interested in changing the common data format mainly for two
reasons:

• Generate specific data types: one might want a specific implementation of IReport

• Performance: some types use less resources than others

For instance, it is possible to generate a KineticReport [6] instead of IReport. This implies
that all the messages without kinematic information are discarded. Note also that
KineticReport carries a minimal information set (just position, time and ID). The code
below changes the example of 4.2.1 to generate a KineticReport.

using CMRE.IO.Reports.InputStream;
using CMRE.IO.Reports.MessageParser;
using CMRE.IO.Reports.OutputStream;
using CMRE.IO.Reports.OutputStream.ReportReceiver;
using CMRE.MSA.Reports;

namespace SimpleFileLogger
{
 public class Program
 {
 static void Main(string[] args)
 {

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 29 -

 Parser<KineticReport> parser =
 new ParserNMEALocalTime<KineticReport>(1, "San Francisco AIS");
 ReportSourceASCII<KineticReport> source =
 new TCP<KineticReport>("hd-sf.com", 9009, parser);

 Receiver<KineticReport> dataReceiver =
 new FileReceiver<KineticReport>(@"d:\tmp\ais_parsed.txt");
 source.SetReceiver(dataReceiver);
 source.Start();
 }
 }
}

Note that the Parser may raise a run-time exception when it is created, because there is
no report converter for the actual value of the generic type parameter T.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 30 -

5
Database Access Layer

5.1 Introduction

This chapter describes the Database Access Layer (DAL), which encapsulates all of the
database access logic inside an assembly (namespace CMRE.Data.Sql) in order to keep
the database structure independent from the business logic, as recommended by software
design best practices. Software engineering literature contains numerous examples of
methods and tools to achieve this result, ranging from Object Relational Mapping (ORM)
tools (see [9] and [10]) to more modern methodologies (as described in [11]). The CMRE
MSA team decided to implement a simple custom solution, avoiding ORM (as suggested
in [12]), mainly to be able to write direct SQL queries with the goal of achieving better
performance, and to make the transition from OLTP to OLAP completely transparent,
depending on the queried time range.

5.2 Class structure

The base class of the hierarchy is Statement, which encapsulates the creation of the
SqlConnection to the OLAP and OLTP databases. Database information, such as the
connection string, is stored in DatabaseInfo objects. This class is also responsible to
create the SqlCommand, even if the SQL statement construction is delegated to the
subclasses via the virtual method Sql(). Statement implements IDisposable [13] and it is
responsible for releasing the SqlCommand object and the SqlConnection to the ADO.NET
connection pool. The subclasses of Statement encapsulate three types of functionalities:

• Implementation of the SQL select statement (Query)

• Implementation of a simpler query that returns a scalar value (ScalarQuery)

• Implementation of SQL non-query instructions such as insert and update (Command)

These three functionalities are implemented respectively by MultiTableQuery,
MultiTableScalarQuery and MultiTableCommand, which encapsulate the logic for
handling the SQL operations on multiple tables split over time (as explained in Chapter
2). The knowledge of the splitting granularity is set in the DatabaseInfo object by using
TimeSplittingPolicy objects. These high-level classes are graphically described in the
UML diagram of Figure 14: .

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 31 -

 UML diagram of high-level DAL classes. Figure 14:

All of the classes described above are abstract, and in order to create a concrete database
operation, one should derive from the appropriate super class. A set of predefined
concrete classes are available in the assembly CMRE.Data.Sql.dll, implementing queries
and commands for the CMRE MSA database (see Chapter 2).

Figure 15: shows an UML diagram for the ExtractAISContactsByTimeAndBBox class
(available in CMRE.Data.Sql.dll), which implements the SQL select on the AIS_Contacts
tables (see 2.2.1) using a time range and a bounding box restriction in the SQL where
clause. Note that the actual SQL statement is inside each concrete class. When the user
needs a new database operation, a new sub class needs to be implemented. In this way,
users of the framework can extend the number of database functions to their will, without
modifying other deployed operations, and thereby complying with the Open-Closed
Principle [15].

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 32 -

 Detailed UML class diagram of a concrete query. Figure 15:

All the query operations (Query and MultipleTableQuery) deliver the results to the user
via an Execute() method in form of IReport [6] or its subclasses. The concrete type of the
generated IReport is established by the user via the actual value of the generic type
parameter T. The mapping between the database record fields and the report object is
performed by classes derived from the IFieldsMapping interface, which is passed by the
user to the concrete Query object via a constructor parameter. In future releases, the
Query objects might find a default IFieldMapping implementation using reflection and
the actual type of the generic type parameter T. The reports are generated out of the
database result-set records, following a lazy-initialization [14] pattern using the C# yield
keyword. This approach avoids the allocation of the full result-set in memory, which
would otherwise potentially cause out-of-memory run-time exceptions.

In the next two subsections, the use of the DAL is described from two distinct points of
view. In 5.3, it is explained how to add a new query to the DAL for a user that wants to
extend it. Basic knowledge of the database schema is required. In 5.4, it is explained how
to use the queries and the commands for the DAL clients.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 33 -

5.3 How to extend the database access layer

New queries and/or commands can be added to the database access layer by sub-classing
the desired abstract class, depending on the query type. For instance let’s extend the DAL
with a new query that extracts AIS Contacts inside a given time range with speed greater
than a given minimum value.

using CMRE.Utility.DataStructure;
using CMRE.Utility.EnhancedTypes;

public class ExtractAISContactsByTimeAndSpeed<T> : MultiTableQuery<T>
{
 private TimeInterval timeInterval;
 private double speed;

 public ExtractAISContactsByTimeAndSpeed(IFieldsMapping<T>
_record2ReportMapping)
 : base(
 @"SELECT $fields FROM AIS_Contacts$table_suffix AS c WHERE Time
BETWEEN @startTime AND @endTime AND speed > @speed",
 _record2ReportMapping
)
 {
 }

 public void SetParameters(int _sid, TimeInterval _timeInterval, double _speed)
 {
 base.SetParams(_timeInterval, _sid);
 timeInterval = _timeInterval;
 speed = _speed;
 }

 protected override void InternalSetParams()
 {
 AddParameter("@startTime", interval.StartTime().ToEpoch());
 AddParameter("@endTime", interval.EndTime().ToEpoch());
 AddParameter("@speed", speed);
 }
}

A subclass of MultiTableQuery has been created, since AIS are stored in the CMRE
database using multiple tables split over time (see Chapter 2). Only two methods are
necessary: a public SetParameters(), where the query input variables will be passed by
the users and will be store in data member variables; and a protected InternalSetParams()
where the parameters are injected into the prepared SQL statement. Note the constructor
where the client will provide the IFieldMapping implementation which is compatible
with the actual type parameter. The actual SQL statement is passed to the super class
constructor call.

5.4 How to use the database access layer

This subsection describes the database access layer from the framework user point of
view. It is worth noting the simplicity of the public interface of the DAL classes. The
inner complexity of database access has been completely encapsulated inside the DAL,
enabling the user to accomplish the database query with only a few lines of code. The
code below shows the use of the class ExtractAISContactsByTimeAndBBox. Note that
CMRE.Data.Sql.dll, CMRE.Utility.dll and SACore.Information.Basic.dll need to be
linked.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 34 -

using System;
using SACore.Information;
using CMRE.Data.Sql;
using CMRE.Utility.Logging;
using CMRE.Utility.DataStructure.TimeSplittingPolicies;
using CMRE.Utility.DataStructure;
using CMRE.Utility.Topology;

public class Program
{
 public static void Main(string[] args)
 {
 Statement.SetDbInfo(Statement.Source.OLTP, new DatabaseInfo("<your
database connection string here>", TimeSplittingPolicy.Create("Weekly")));
 Statement.SetDbInfo(Statement.Source.OLAP, new DatabaseInfo("<your
database connection string here>", TimeSplittingPolicy.Create("Monthly")));

 using (ExtractContactsByTimeAndBBox<IReport> query = new
ExtractContactsByTimeAndBBox<IReport>(new FieldsMappingAISContacts2Report(),
true))
 {

 query.SetParameters(1, TimeInterval.Last24Hours(),
Rectangle.AegeanSea());
 foreach (IReport r in query.Execute())
 {
 Console.WriteLine(r);
 }
 }
 }
}

The initial Statement.SetDbInfo() instructions are necessary to initialize the database
connections. The C# using statement is used to create the query and to ensure that
memory clean-up is properly performed calling the Dispose() method at the end of the
scope, releasing also the database connection to the pool. In the constructor the
FieldsMappingAISContacts2Report object is passed, coherently with the actual type of
the generic type parameter T (IReport). Then the query’s input parameters are set with
SetParameter() call. The first int parameter identifies the data source ID inside the
database. The query is finally executed using the Execute() method, as described in
Paragraph 5.2. When this program is run the output records are displayed to the console
standard output.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 35 -

6
Conclusions

A complete system to support MSA sensor data handling has been presented. The system,
designed and implemented at NATO STO CMRE for the MSA project, has been
deployed since 2009 and is still under continuous development. This paper demonstrates
in this context an effective approach to develop a system able to deliver relevant
information from sensors to the information consumer, in timely manner. Furthermore,
this implementation is also a real solution for the storage of historical queries which,
combined with historical data mining, results to be a step towards Information Superiority
in the Maritime domain. Moreover, the system represents an easy data access tool for
scientists in the fields of data fusion, target tracking, sensor performance evaluation and
anomaly detection.

There are many future developments envisioned:

• Enable the deployment of the system to other NATO bodies, Nations, or research
centres. This will require the addition of easy administration capabilities and
extension of the array of possible RDBS which can be used.

• Enable the database spatial capabilities and connect to an Open Geospatial
Consortium Web Mapping Server and/or Web Feature Server to extend the number of
possible clients.

• Integrate with tasks performing data mining and knowledge discovery such as [16] or
[19][20]. These activities can benefit from this architecture and the integration of the
DAL is envisioned in the near future.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 36 -

Acronyms

• SOA: Service Oriented Architecture

• MSA: Maritime Situational Awareness

• MetOc: Meteorological Oceanographical

• ETL: Extract Transform Load

• DAL: Database Access Layer

• AIS: Automatic Identification System

• SQL: Structured Query Language

• OLAP/OLTP: On Line Analytical Processing / On Line Transaction Processing

• VDM: VHF Data-link Message

• DBMS: Data Base Management System

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 37 -

Acknowledgements

This work is a portion of the body of work being undertaken by the STO-CMRE MSA
Project Team in 2013 and collaborators consisting of (in Alphabetical Order):

• Gianfranco Arcieri

• Paolo Braca

• Luigi Bruno (Visiting Researcher)

• Karna Bryan (MSA Project Leader)

• Giampaolo Cimino

• Domenico Ciuonzo (Visiting Researcher)

• Steven Horn

• Giuliana Pallotta (Visiting Researcher)

• Giuseppe Papa (Visiting Researcher)

• Renato Sirola (Consultant - MSA Project)

• Michele Vespe

• Ingrid Visentini (Consultant - NEREIDS Project)

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 38 -

References

[1] Leavitt, N. "Will NoSQL Databases Live Up to Their Promise?", IEEE
Computer, Vol. 43, pp. 12-14, Feb. 2010.

[2] “Technical characteristics for a universal shipborne automatic identification
system using time division multiple access in the VHF maritime mobile band NMEA
AIS”, Recommendation M.1371-2, International Telecommunication Union.

[3] “Standard for interfacing marine electronic devices”, National Marine Electronics
Association, NMEA 0813, version 3.00.

[4] Braca, P., Grasso, R., Vespe, M., Maresca, S., Horstmann, J. “Application of the
JPDA-UKF to HFSW radars for maritime situational awareness,” in Proc. of the 15th
International Conference on Information Fusion (FUSION), Singapore, 2012.

[5] Transaction Processing Performance Council. http://www.tpc.org

[6] Horn, S. Arcieri, G., Millefiori, L., Cimino, G. “Information interoperability:
lessons learned on interoperability standards in fusion and tracking. CMRE Formal
Report CMRE-FR-2014-01, 2014.

[7] Arcieri, G., Cimino, G., Horn, S., Bryan, K. “Web service interoperability in a
network-enabled environment”, CMRE Formal Report CMRE-FR-2014-003, 2014.

[8] Richter, J. “CLR via C#”, Microsoft Press, Third Edition, Feb. 2010.

[9] Perkins, B. “Working with NHibernate 3.0”, Wrox, First edition, Sep. 2011.

[10] Lerman, J. “Programming Entity Framework: Building Data Centric Apps with
the ADO.NET Entity Framework”, O'Reilly Media Second Edition, Aug 2010.

[11] Dapper.Net. http://code.google.com/p/dapper-dot-net/.

[12] Neward, T. “The Vietnam of Computer Science”, Ted Neward's technical blog,
26 June, 2006.

[13] Duffy, J. “DG Update: Dispose, Finalization, and Resource Management” Joe
Duffy Technical Blog, 8 April, 2005.

[14] Fowler, M. “Lazy Initialization”,
http://martinfowler.com/bliki/LazyInitialization.html.

[15] Meyer, B. “Object Oriented Software Construction”, Prentice Hall, 1988.

CMRE-FR-2014-017 NATO UNCLASSIFIED

 NATO UNCLASSIFIED - 39 -

[16] Baldacci, A., Fabiani,, A., Giannecchini, S. “Contact-based AIS coverage
estimation and distribution”, NURC Memorandum Report NURC-MR-2008-001, March
2008.

[17] University of Hamburg HF-Radar Home Page. http://ifmaxp1.ifm.uni-
hamburg.de.

[18] Helzel Messtechnik GmbH. http://www.helzel.com.

[19] Vespe, M., Pallotta, G., Visentini, I., Bryan, K., Braca, P. “Maritime Anomaly
Detection based on Historical Trajectory Mining”, NATO Port and Regional Maritime
Security Symp. Research and Technology Organization, Lerici (SP), 2012.

[20] Vespe, M., Visentini, I., Bryan, K., Braca, P. “Unsupervised Learning of
Maritime Traffic Patterns for Anomaly Detection, 9th IET Data Fusion and Target
Tracking Conference, London, 2012.

Document Data Sheet
Security Classification

NATO UNCLASSIFIED

Project No.

MSA

Document Serial No.

CMRE-FR-2014-017

Date of Issue

October 2014

Total Pages

45 pp.

Author(s)

Cimino, G., Arcieri, G., Horn, S., Bryan, B.

Title

Sensor data management to achieve information superiority in maritime situational awareness.

Abstract

This report describes the data handling process set up at the NATO Science & Technology Organization
(STO) Centre for Maritime Research and Experimentation (CMRE) which includes sensor data
acquisition, processing, storage and access in support of the Maritime Situational Awareness (MSA)
project. The Database Management System (DBMS) and the way in which sensor data is acquired and
loaded using a database access layer framework for client applications is described. The system has been
designed and developed to cope with extremely large data volumes generated by sensors and it is the
foundation for supporting the CMRE MSA Service Oriented Architecture and the Fusion on Demand
concept. Many aspects of this system are then analyzed: data sensor parsing, real-time database loading,
database structure, database data extraction (real-time and historical). This analysis is supported with
performance figures for the use of the system with real data sets. This analysis demonstrates that the
system is an effective way to deliver relevant information to MSA decision makers. The whole system is
currently deployed at CMRE.

Keywords

MSA, Database, DBMS, SQL Server, AIS, ETL, OLAP, OLTP, Radar, C#, Big Data, Microsoft .Net,
Information Superiority

Issuing Organization

Science and Technology Organization
Centre for Maritime Research and Experimentation

Viale San Bartolomeo 400, 19126 La Spezia, Italy

[From N. America:
STO CMRE
Unit 31318, Box 19, APO AE 09613-1318]

Tel: +39 0187 527 361
Fax:+39 0187 527 700

E-mail: library@cmre.nato.int

mailto:library@cmre.nato.int

	CMRE-FR-2014-017
	Executive Summary
	Abstract
	Contents
	1. Introduction
	1.1 Rationale
	1.2 Guide for the reader

	2. Database
	2.1 Technical foundation and system design
	2.2 Table structure
	2.3 Data volumes
	2.4 Performance

	3. Data Assimilation
	3.1 Introduction
	3.2 Class Structure

	4. Data Assimilation Guide
	4.1 Introduction
	4.2 How to create a simple logger

	5. Database Access Layer
	5.1 Introduction
	5.2 Class structure
	5.3 How to extend the database access layer
	5.4 How to use the database access layer

	6. Conclusions
	Acknowledgements
	References

